Search results for "Sterol Regulatory Element Binding Protein 2"

showing 7 items of 7 documents

Reduced VLDL clearance in ApoeNpc1 mice is associated with increased Pcsk9 and Idol expression and decreased hepatic LDL-receptor levels

2010

Niemann-Pick type C1 (NPC1) promotes the transport of LDL receptor (LDL-R)-derived cholesterol from late endosomes/lysosomes to other cellular compartments. NPC1-deficient cells showed impaired regulation of liver_X receptor (LXR) and sterol regulatory element-binding protein (SREBP) target genes. We observed that Apoe(-/-)Npc1(-/-) mice displayed a marked increase in total plasma cholesterol mainly due to increased VLDL, reflecting decreased clearance. Although nuclear SREBP-2 and Ldlr mRNA levels were increased in Apoe(-/-)Npc1(-/-) liver, LDL-R protein levels were decreased in association with marked induction of proprotein convertase subtilisin/kexin type 9 (Pcsk9) and inducible degrade…

Apolipoprotein EreceptorCholesterol VLDLLDL/metabolismMacrophages Peritoneal/cytologyBiochemistryMiceEndocrinologyhemic and lymphatic diseasesReceptorsOrphan Nuclear Receptors/geneticspolycyclic compoundsnuclear receptorCells CulturedResearch ArticlesLiver X ReceptorsMice KnockoutCulturedSterol Regulatory Element Binding Protein 2/geneticslipoproteinSerine EndopeptidasesIntracellular Signaling Peptides and ProteinsLamin Type AOrphan Nuclear ReceptorsTriglycerides/bloodCholesterolLiverProteins/geneticsKexinlipids (amino acids peptides and proteins)Proprotein ConvertasesProprotein Convertase 9Sterol Regulatory Element Binding Protein 1Niemann-Pick diseaseSterol Regulatory Element Binding Protein 2medicine.medical_specialtyCellsKnockoutUbiquitin-Protein LigasesReceptors LDL/metabolismSerine Endopeptidases/geneticsQD415-436BiologyCholesterol/blooddigestive systemApolipoproteins ELiver/physiologySterol Regulatory Element Binding Protein 1/geneticsNiemann-Pick C1 ProteinInternal medicinemedicineAnimalsPeritoneal/cytologyCholesterol VLDL/metabolismUbiquitin-Protein Ligases/geneticsLiver X receptorTriglyceridesMacrophagesPCSK9Proteinsnutritional and metabolic diseasesVLDL/metabolismLamin Type A/metabolismCell BiologySterol regulatory element-binding proteinEndocrinologyReceptors LDLLDL receptorMacrophages PeritonealSterol regulatory element-binding protein 2atherosclerosisApolipoproteins E/geneticsLipoproteinJournal of Lipid Research
researchProduct

A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα-mediated upregulation of SREBP-2 target genes in the liver.: ThB …

2011

International audience; Peroxisomal 3-ketoacyl-CoA thiolase B (Thb) catalyzes the final step in the peroxisomal β-oxidation of straight-chain acyl-CoAs and is under the transcription control of the nuclear hormone receptor PPARα. PPARα binds to and is activated by the synthetic compound Wy14,643 (Wy). Here, we show that the magnitude of Wy-mediated induction of peroxisomal β-oxidation of radiolabeled (1-(14)C) palmitate was significantly reduced in mice deficient for Thb. In contrast, mitochondrial β-oxidation was unaltered in Thb(-/-) mice. Given that Wy-treatment induced Acox1 and MFP-1/-2 activity at a similar level in both genotypes, we concluded that the thiolase step alone was respons…

MaleMESH: HepatomegalyPalmitatesMESH : PyrimidinesMESH : Gene DeletionBiochemistryelement-binding proteinsMESH : Acetyl-CoA C-AcyltransferaseMiceMESH: Up-RegulationMESH: AnimalsMESH : Up-RegulationMESH: Lipid Metabolism0303 health sciencesMESH : Gene Expression RegulationThiolase030302 biochemistry & molecular biologyGeneral MedicineMESH : HepatomegalyUp-Regulationzellweger-syndromePeroxisome ProliferatorsMESH: Peroxisome ProliferatorsHepatomegalySterol Regulatory Element Binding Protein 2peroxisomal 3-ketoacyl-CoA thiolase BMESH: Mitochondria3-oxoacyl-coa thiolaseLathosterolfatty-acid oxidationrat-liverMESH: Sterol Regulatory Element Binding Protein 203 medical and health sciencesMESH : Sterol Regulatory Element Binding Protein 2HumansPPAR alphaMESH : Peroxisome Proliferators[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPPARaVLAGMESH : Oxidation-ReductionFatty Acid Oxidation.MESH: HumansCholesterolMESH : HumanscholesterolLipid MetabolismMESH: PeroxisomesSterol regulatory element-binding proteinchemistryMESH: PyrimidinesCholesterol; Micro-array analysis; Peroxisomal 3-ketoacyl-CoA thiolase B; PPARα and SREBP-2; Wy14643Fatty Acid OxidationGene DeletionMESH: LiverMESH: Oxidation-ReductionMESH: Signal TransductionMESH: Mice KnockoutVoeding Metabolisme en Genomicachemistry.chemical_compoundMESH: CholesterolMESH : Lipid MetabolismWy14MESH : PalmitatesMESH: PPAR alphaMESH : CholesterolMice Knockoutneuronal migration643PeroxisomeAcetyl-CoA C-AcyltransferaseMESH: Gene Expression RegulationMetabolism and GenomicsMitochondriaLiverBiochemistryMicro-array analysisMetabolisme en GenomicaACOX1Nutrition Metabolism and GenomicsMESH : MitochondriaOxidation-ReductionSignal Transductionacyl-coa oxidasecholesterol-synthesisMESH : MaleMESH : PPAR alphaPeroxisome ProliferationPPARα and SREBP-2Biologybeta-oxidationVoedingproliferator-activated receptorsMESH : MicePeroxisomesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Mice030304 developmental biologySCP2NutritionMESH : Signal TransductionMESH : LiverMESH: PalmitatesMESH: MalePyrimidinesMESH: Acetyl-CoA C-AcyltransferaseGene Expression RegulationMESH: Gene DeletionMESH : Mice KnockoutMESH : AnimalsMESH : Peroxisomes
researchProduct

Moderate consumption of beer reduces liver triglycerides and aortic cholesterol deposit in LDLr-/- apoB100/100 mice.

2006

This study was designed to address the effects of a moderate consumption of beer on serum and liver lipid parameters and on the development of aortic lesions in a mouse model associated with a human atherogenic lipoprotein profile. LDLr(-/-) apoB(100/100) mice received each day during 12 weeks either water, mild beer (0.570g of ethanol/kg of body weight) or ethanol-free beer in a single pure dose. Serum and liver lipid parameters were analyzed and atherosclerotic lesions were estimated in heart and aorta through their total cholesterol content. mRNA levels of enzymes and receptors involved in lipoprotein uptake, in fatty acid esterification and oxidation, and in reverse cholesterol transpor…

medicine.medical_specialtyApolipoprotein BAlcohol DrinkingCholesterol VLDLAortic DiseasesPalmitatesDown-RegulationAorta ThoracicMitochondria LiverPolymerase Chain ReactionPhosphatidylcholine-Sterol O-Acyltransferasechemistry.chemical_compoundMiceInternal medicinemedicineAnimalsRNA MessengerScavenger receptorChromatography High Pressure LiquidTriglyceridesApolipoproteins BbiologyTriglycerideCholesterolReverse cholesterol transportCholesterol HDLfood and beveragesBeerLipoprotein(a)Cholesterol LDLScavenger Receptors Class BAtherosclerosisMice Inbred C57BLEndocrinologychemistryLiverReceptors LDLLDL receptorbehavior and behavior mechanismsbiology.proteinlipids (amino acids peptides and proteins)FemaleCardiology and Cardiovascular MedicineOxidation-ReductionLipoproteinSterol Regulatory Element Binding Protein 2Atherosclerosis
researchProduct

Urokinase activates macrophage PON2 gene transcription via the PI3K/ROS/MEK/SREBP-2 signalling cascade mediated by the PDGFR-β

2009

Aims We have recently shown that urokinase plasminogen activator (uPA) increases oxidative stress (OS), cholesterol biosynthesis, and paraoxonase 2 (PON2) expression in macrophages via binding to its receptor, the uPAR. Since PON2 is regulated by both OS and cholesterol content, we hypothesized that uPA elicits a cascade of signal transduction events shared by NADPH oxidase and cholesterol biosynthesis that culminates in PON2 gene expression. Here, we investigated the signalling pathway that leads to the expression of PON2 in macrophages in response to uPA. Methods and results The increase in macrophage PON2 mRNA levels in response to uPA was shown to depend on PON2 gene promoter activation…

Transcription GeneticPhysiologyReceptor Platelet-Derived Growth Factor betaPhosphatidylinositol 3-KinasesPhysiology (medical)Gene expressionHumansExtracellular Signal-Regulated MAP KinasesTranscription factorCells CulturedMitogen-Activated Protein Kinase KinasesRegulation of gene expressionNADPH oxidasebiologyAryldialkylphosphataseKinaseMacrophagesNADPH OxidasesUrokinase-Type Plasminogen ActivatorCell biologySterol regulatory element-binding proteinUrokinase receptorGene Expression RegulationBiochemistryTissue Plasminogen Activatorbiology.proteinSignal transductionReactive Oxygen SpeciesCardiology and Cardiovascular MedicineSignal TransductionSterol Regulatory Element Binding Protein 2Cardiovascular Research
researchProduct

Hepatic farnesyl diphosphate synthase expression is suppressed by polyunsaturated fatty acids

2005

Dietary vegetable oils and fish oils rich in PUFA (polyunsaturated fatty acids) exert hypocholesterolaemic and hypotriglyceridaemic effects in rodents. The plasma cholesterol-lowering properties of PUFA are due partly to a diminution of cholesterol synthesis and of the activity of the rate-limiting enzyme HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase). To better understand the mechanisms involved, we examined how tuna fish oil and individual n−3 and n−6 PUFA affect the expression of hepatic FPP synthase (farnesyl diphosphate synthase), a SREBP (sterol regulatory element-binding protein) target enzyme that is subject to negative-feedback regulation by sterols, in co-ordination …

RNA StabilityBlotting WesternDown-RegulationReductaseBiochemistryGene Expression Regulation EnzymologicMicechemistry.chemical_compoundFish OilsFarnesyl diphosphate synthaseCell Line TumorAnimalsHumansRNA MessengerPromoter Regions GeneticMolecular BiologyTriglyceridesCell Nucleuschemistry.chemical_classificationAlkyl and Aryl TransferasesbiologyTunaCholesterolalpha-Linolenic acidalpha-Linolenic Acidfood and beveragesGeranyltranstransferaseCell BiologyHydroxymethylglutaryl-CoA reductaseEicosapentaenoic acidDietRatsDNA-Binding ProteinsCholesterolLiverchemistryBiochemistryDocosahexaenoic acidCCAAT-Enhancer-Binding ProteinsFatty Acids Unsaturatedbiology.proteinHydroxymethylglutaryl CoA Reductaseslipids (amino acids peptides and proteins)Sterol Regulatory Element Binding Protein 1Sterol Regulatory Element Binding Protein 2Transcription FactorsResearch ArticlePolyunsaturated fatty acidBiochemical Journal
researchProduct

Induction of cholesterol biosynthesis by archazolid B in T24 bladder cancer cells.

2014

Abstract Background Resistance of cancer cells towards chemotherapeutics represents a major cause of therapy failure. The objective of our study was to evaluate cellular defense strategies in response to the novel vacuolar H+-ATPase inhibitor, archazolid B. Experimental approach: The effects of archazolid B on T24 bladder carcinoma cells were investigated by combining “omics” technologies (transcriptomics (mRNA and miRNA) and proteomics). Free cholesterol distribution was determined by filipin staining using flow cytometry and fluorescence microscopy. Flow cytometry was performed for LDLR surface expression studies. Uptake of LDL cholesterol was visualized by confocal microscopy. SREBP acti…

IndolesCell SurvivalBiologyReal-Time Polymerase Chain ReactionBiochemistryFatty Acids Monounsaturatedchemistry.chemical_compoundCell Line TumormedicineHumansFluvastatinPharmacologyCholesterolReproducibility of ResultsMolecular biologySterolEndocytosisSterol regulatory element-binding proteinGene Expression Regulation NeoplasticLipoproteins LDLMicroRNAsThiazolesCell killingCholesterolchemistryReceptors LDLUrinary Bladder NeoplasmsDrug Resistance NeoplasmLDL receptorCancer celllipids (amino acids peptides and proteins)Sterol regulatory element-binding protein 2MacrolidesSterol Regulatory Element Binding Protein 1Fluvastatinmedicine.drugSterol Regulatory Element Binding Protein 2Biochemical pharmacology
researchProduct

Evaluation of the therapeutic potential of PPARalpha agonists for X-linked adrenoleukodystrophy.

2003

Adrenoleukodystrophy protein (ABCD1), a peroxisomal membrane protein, is mutated in patients affected by X-linked adrenoleukodystrophy (X-ALD). Adrenoleukodystrophy-related protein (ABCD2) is the closest relative of ABCD1. Pharmacological induction of ABCD2 gene expression has been proposed as a novel therapy strategy for X-ALD. Fibrates induce peroxisome proliferation and Abcd2 expression in rodent liver. Here we evaluate the possibility of using peroxisome proliferator-activated receptor alpha (PPARalpha) agonists for pharmacological induction of ABCD2 expression. In the liver of PPARalpha-deficient mice, both the constitutive and the fenofibrate-inducible Abcd2 gene expression was found …

Malemedicine.medical_specialtyEndocrinology Diabetes and MetabolismMolecular Sequence DataDrug Evaluation PreclinicalPeroxisome ProliferationReceptors Cytoplasmic and NuclearBiologySulfidesATP Binding Cassette Transporter Subfamily DResponse ElementsBiochemistrychemistry.chemical_compoundMiceEndocrinologyInternal medicineGene expressionGeneticsmedicineAnimalsAdrenoleukodystrophyMolecular BiologyGenePhenylurea CompoundsTetradecylthioacetic acidBrainmedicine.diseaseMolecular biologyIntronsMice Mutant StrainsSterol regulatory element-binding proteinDNA-Binding ProteinsMice Inbred C57BLButyratesSterolsEndocrinologychemistryGene Expression RegulationLiverCCAAT-Enhancer-Binding ProteinsSterol Regulatory Element Binding Protein 1AdrenoleukodystrophyATP-Binding Cassette TransportersSterol regulatory element-binding protein 2Sterol Regulatory Element Binding Protein 1Sterol Regulatory Element Binding Protein 2Transcription FactorsMolecular genetics and metabolism
researchProduct